A new cell for industrially relevant studies of operating PEM fuel cells using hard X-rays
Finden scientists’ new work on the design and application of a new cell for proton-exchange membrane fuel cells has been published in a new paper, “X-ray transparent proton-exchange membrane fuel cell design for in situ wide and small angle scattering tomography” in the Journal of Power Sources. The cell design and experimental work was performed by Isaac Martens and Jakub Drnec using ESRF’s ID31 beamline.
We have constructed a 5 cm2 proton exchange membrane hydrogen fuel cell optimized for transparency of high energy X-rays. This cell allows for in situ elastic scattering measurements (WAXS, SAXS) during electrochemical operation with minimal trade-offs in cell performance vs benchtop designs, and is capable of reaching automotive current densities. A key feature is that the beam enters the cell at grazing incidence to the electrodes, massively increasing the effective pathlength and therefore the signal-to-background ratio. The transparency in the plane of the sample permits imaging coupled with advanced techniques, such as X-ray diffraction computed tomography.
The work was done at the The European Synchrotron (ESRF) and research partners included; University of British Columbia, Université Grenoble Alpes, University of Helsinki, Aalto University, Baltic Fuel Cells and University College London.
Read the article at https://www.sciencedirect.com/science/article/abs/pii/S0378775319308997