Latest news:
To get regular updates on all our news and events direct to your inbox
Sign up to our newsletter here
To get regular updates on all our news and events direct to your inbox
Sign up to our newsletter here
Address: Building R71, Rutherford Appleton Laboratory, Harwell, Oxford, OX11 0QX
Email: office@finden.co.uk
Telephone: +44 (0)7734 225187
Finden Ltd is a company registered in England and Wales. Company number: 8254352. & VAT number 155119814. Our registered office: Merchant House, 5 East St Helen Street, Abingdon, Oxfordshire. OX14 5EG.
This site uses cookies. By continuing to browse the site, you are agreeing to our use of cookies.
OKLearn moreWe may request cookies to be set on your device. We use cookies to let us know when you visit our websites, how you interact with us, to enrich your user experience, and to customize your relationship with our website.
Click on the different category headings to find out more. You can also change some of your preferences. Note that blocking some types of cookies may impact your experience on our websites and the services we are able to offer.
These cookies are strictly necessary to provide you with services available through our website and to use some of its features.
Because these cookies are strictly necessary to deliver the website, refusing them will have impact how our site functions. You always can block or delete cookies by changing your browser settings and force blocking all cookies on this website. But this will always prompt you to accept/refuse cookies when revisiting our site.
We fully respect if you want to refuse cookies but to avoid asking you again and again kindly allow us to store a cookie for that. You are free to opt out any time or opt in for other cookies to get a better experience. If you refuse cookies we will remove all set cookies in our domain.
We provide you with a list of stored cookies on your computer in our domain so you can check what we stored. Due to security reasons we are not able to show or modify cookies from other domains. You can check these in your browser security settings.
These cookies collect information that is used either in aggregate form to help us understand how our website is being used or how effective our marketing campaigns are, or to help us customize our website and application for you in order to enhance your experience.
If you do not want that we track your visit to our site you can disable tracking in your browser here:
We also use different external services like Google Webfonts, Google Maps, and external Video providers. Since these providers may collect personal data like your IP address we allow you to block them here. Please be aware that this might heavily reduce the functionality and appearance of our site. Changes will take effect once you reload the page.
Google Webfont Settings:
Google Map Settings:
Google reCaptcha Settings:
Vimeo and Youtube video embeds:
The following cookies are also needed - You can choose if you want to allow them:
You can read about our cookies and privacy settings in detail on our Privacy Policy Page.
Privacy Policy
New position for a Machine Learning and Tomography Scientist
We invite applications for a Machine Learning and Tomography Scientist. The position is initially limited to 1 year. As the Machine Learning and Tomography Scientist, you will be responsible for developing algorithms and machine/deep learning models to handle, analyse and denoise X-ray CT, spectroscopy and diffraction/scattering data.
For more information and to apply visit – https://www.nature.com/naturecareers/job/machine-learning-and-tomography-scientist-finden-ltd-752936
Finden in new Faraday annual report
Finden were pleased to be mentioned in the Faraday Institution 2020/21 Annual report on batteries. The report covers how the organisation is:
More information in the Faraday Institution annual report on pages 59 and 66. You can read the full report at https://www.faraday.ac.uk/2020-21-annual-report/
The CAROTS Startup Guide for scientists is out!
The last publication of the CAROTS project: The CAROTS Startup Guide has been published. This guide has been written within the CAROTS project with contribution from our Director Dr Simon Jacques and CSO Prof Andrew Beale to help future founders of Scientific Service Companies (SSCs). It is a tailored guide that will help scientists on their way to starting up the next Scientific Service Company in Europe. In this guide they will learn about 1) different kinds of business models, 2) the market they will operate within, 3) how to take their service to market and sell it, 4) future ideas about intellectual property, and 5) how they will fund their startup in the early days.
You will find the guide for download at https://www.carots.eu/sites/sites_custom/site_carots/content/e114136/e151844/CAROTSStartupGuide.pdf
μ-CT Investigation into the Impact of a Fuel-Borne Catalyst Additive on the Filtration Efficiency and Backpressure of Gasoline Particulate Filters
Finden, working with Infineum UK Ltd. and muVIS (Uni. Southampton), used micro-CT to quantify the beneficial effects of a fuel borne catalyst on the back pressure and filtration efficiency of a gasoline particulate filter tested under real world conditions.
Find the article at https://saemobilus.sae.org/content/04-15-02-0006/
Finden at the Big Science Summit
Our Director Simon Jacques discussed how best to boost the economic impact of Europe’s research facilities along with delegates at the recent Big Science Summit in Malmö, Sweden, read the article on the event by Joe McEntee in Physics World at https://physicsworld.com/a/building-bridges-between-big-science-and-industry/
Faraday Conference – ECR Themes
16 November 2021
Session: Advanced X-ray and Neutron techniques
Dr Stephen Price is an Industrial Research Fellow with the University of Sheffield, and will be presenting at the ECR day of the Faraday Institution Conference 2021. He will present an overview of the advanced X-ray and analytical techniques Finden has been developing, and how these can be applied to better understand the structural origin of the improved electrochemical performance of the novel cathode materials being developed by the FutureCat project (https://futurecat.ac.uk/), led by Professor Serena Cussen.
This session focuses on the increasingly popular application of X-ray and neutron-based techniques to analyse, image and characterise batteries and their materials. These include both central-facility-based research and analysis that can be performed in university labs to improve the performance and safety of battery technology.
For more information visit https://faradayconference.org.uk/programme/ecr-themes/
Finalists in xTech Global AI Challenge
Our Research Scientist Dr Naomi Omori attended the finalist pitch event, held at Imperial College London Innovation Hub on September 9-10, 2021. The finalists pitched their proposed solutions to a panel of AI experts from DEVCOM Army Research Laboratory (ARL), Air Force AI/ML Accelerator, Naval Information Warfare Center – Pacific (NIWC), DOD Joint AI Center (JAIC), UK Defense Science and Technology Lab (DSTL), and French Defence Innovation Agency (DIA).
Naomi said of the experience, “Being selected as a finalist and representing Finden was a great opportunity. Not only did we get the chance to pitch twice to a lot of useful contacts in the UK and US defence sector, we have also been granted access to an accelerator program that will help Finden to gain traction in this new field. Although we didn’t win any of the cash prizes, our technology pitch was very well received by many of the people I interacted with and it was great to see how the technologies Finden develops can be of interest to sectors beyond what they were originally developed for. I am looking forward to learning more through the xTech accelerator and disseminating useful information to the rest of the Finden team.”
Read more about the competition at https://www.army.mil/article/250419
Latest work on diffraction tomography of a commercially-available cylindrical NMC liion battery
Synchrotron high-energy X-ray diffraction computed tomography has been employed to investigate, for the first time, commercial cylindrical Li-ion batteries electrochemically cycled over the two cycling rates of C/2 and C/20. This technique yields maps of the crystalline components and chemical species as a cross-section of the cell with high spatiotemporal resolution (550 × 550 images with 20 × 20 × 3 µm3 voxel size in ca. 1 h). The recently developed Direct Least-Squares Reconstruction algorithm is used to overcome the well-known parallax problem and led to accurate lattice parameter maps for the device cathode. Chemical heterogeneities are revealed at both electrodes and are attributed to uneven Li and current distributions in the cells. It is shown that this technique has the potential to become an invaluable diagnostic tool for real-world commercial batteries and for their characterization under operating conditions, leading to unique insights into “real” battery degradation mechanisms as they occur.
Read the full paper at https://doi.org/10.1002/smtd.202100512
Work on an industrially-sized PEM fuel cell published
Finden scientists Dr Antony Vamvakeros and Dr Simon Jacques have collaborated with collaborated with a big team from multiple institutions including ESRF, Université Grenoble Alpes and University of British Columbia to investigate an industrially-relevant PEM fuel cell using diffraction tomography. You can see the paper, entitled “Imaging Heterogeneous Electrocatalyst Stability and Decoupling Degradation Mechanisms in Operating Hydrogen Fuel Cells”, published at ACS Energy Letters here: https://pubs.acs.org/doi/10. 1021/acsenergylett.1c00718. The work brought together very challenging data (parallax) and the motivation behind the DLSR development (https://scripts.iucr.org/cgi- bin/paper?nb5289).
The proliferation of hydrogen fuel cell systems is hindered by a degradation of the platinum catalyst. Here, we provide a device-level assessment of the catalyst degradation phenomena and its coupling to nanoscale hydration gradients, using advanced operando X-ray scattering tomography tailored for device-scale imaging. Gradients formed inside the fuel cell produce a heterogeneous degradation of the catalyst nanostructure, which can be linked to the flow field design and water distribution in the cell. Striking differences in catalyst degradation are observed between operating fuel cell devices and the liquid cell routinely used for catalyst stability studies, highlighting the crucial impact of the complex operating environment on the catalyst degradation phenomena. This degradation knowledge gap accentuates the necessity of multimodal, in situ characterization of real devices when assessing the performance and durability of electrocatalysts and, more generally, electrochemically active phases used in energy conversion and storage technologies.
Read the full article at https://doi.org/10.1021/acsenergylett.1c00718
Finden join new network of scientific service providers at MIXN
Finden have joined a network of mediator companies at MIXN.
As mediators, Finden will be one of the companies helping industry access product insight by use of x-rays and neutrons. The network work with advanced synchrotron and neutron facilities across Europe, helping customers work within sectors as diverse as pharmaceuticals, energy, and engineering.
We are pleased to join the network in helping customers access these modern techniques for material analysis.
Read more at – https://mixn.org